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s projection method for generating bounds to overlap

Anthea Grubb
Department of Mathematics, Brunel University, Kingston Lane, Uxbridge, Middlesex

Received 3 September 1975

Abstract. In this paper a simple method is presented which unifies and generalizes 2 variety
of upper and lower bounds for overlaps in a Hilbert space context.

1 Istroduction

12t H be the Hamiltonian of a quantum mechanical system, suppose that H has an
ureasing sequence of eigenvalues {E } and that g is the eigenvector corresponding to
£, If ¢ is an approximation to ¥, then assuming that [[yx[=||¢] =1, the overlap
§,=(6, Ux) is a measure of the accuracy of this approximation. A number of papers
e been published in recent years obtaining variational upper and lower bounds to
& Inparticular, Weinhold (1970, 1973) has used his method of Gram determinants to
exrate his inequalities, and Hoffmann-Ostenhof and Hoffmann-Ostenhof (1975)
e started from an operator inequality of Lowdin to get their results.

In this paper, a simple Hilbert space inequality is obtained showing that various
donds are just special cases of this inequality. It uses the standard result (for
wmmple, see Simmons 1963) that the best approximation to a vector by a linearly
adependent set of vectors which span a subspace W is the orthogonal projection of the
weoronto W. The inequality follows by observing that the length of this projection
ot e.:xceed the length of the vector itself. In this paper we shall consider a few of the
wqualities for the ground state overlap Sy =S = (¢, ¥} where Ej is assumed to be
Wn-degenerate. The generalization to excited states is obvious.

L The projection method
l“{ylg-.-,yn} be any set of vectors which span a subspace W, and let v be a given
®orin the Hilbert space. The vector

Y=an+... ta,y, (2.1)

B W which ; o .
Which s the best approximation to v in the sense that lo =yl is a minimum is the

. onal projection of v on W, and hence v —y is orthogonal to W, This leads to the
equations

(%6 ¥) =y, v) i=1,...,n. (2.2)
Let G be the Gram matrix of {y,, .. .,y,} with elements
Gy =(y, y;) (2.3)
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212 A Grubb

and let B be the column vector with elements

Bi= ()’i, v). (2_4)
Then equations (2.1) and (2.2) can be written as .

Ga=B. 09
The matrix G is Hermitian since

(Gf)i,' = (;,:_)’—.) =(ys Yj) = Gx‘j 26
and non-singular provided that {y,...,y.} are linearly independent so that th

equation can be solved for a.
Since y is the projection of v on W, we have

Iyl <ol (2.70)
that is

Z &y, y;) < "0”2 (2.7

ij

Substituting @ = G™'B, we obtain
B'G™'B=ol? 28

which is the inequality which yields bounds for the overlap. If {y,,..., y.} forman
orthogonal set then G is diagonal with

Gy= UY.-UZ&; @9
and in this case inequality (2.8) takes the simpler form

1B _\ 2
Ly p<ter 20

3. The bounds of Weinhold and Rayner

The vector

v=6—(Yo, $)i (D
is orthogonal to ¢, and

Jolf = 1~IsF" .

Let {x1, ..., x»} be a linearly independent set of vectors, and let
i =(H—Eg)x. 63

Provided that ¢, does not lie in the subspace spanned by {xi,...:Xa} ¢ wt
{y1.. .., ya}tislinearly independent and we can approximate v by thisset. We find that

Bi={x;, (H-Ey)é) (3:44)
and

Gy =(x, (H-E,)*x;) (3.48)



Bounds to overlap 213

gich leads t0 the upper bound
IsP<1-8'G™'B. (3.5)
§ in addition {y1,- .., ¥} is an orthogonal set, we get Rayner’s upper bound (see
Feabold 1970) 2
st <12 e 6
We can generate lower bounds for [S|* by approximating the vector

v=(H-E1)1/2(¢_<‘//0, &) o). (3.7)

se (H- E,) is a positive operator on the subspace of vectors orthogonal to i, the
guare root and hence v are well defined. A simple calculation shows that

ol = (H)— E; +(E; ~ Eo)|S[* (3.8)
where ,

(H)=(¢, H). 3.9
fiwe choose the vectors {x;, ..., x.} so that

yi=(H-E)(H-E;)"*x; (3.10)
salinearly independent set and use this set to approximate v, we find that

B:={x, (H—E:)(H—-Ej)¢) (3.11a)
ad

Gy =(x, (H—E)(H—Eo)’x;). (3.11b)

With these values of B; and G;; we have the lower bound
ISF=(E,—(H)+B"G™'B)(E, ~E,)* (3.12)

;‘;‘il(i)f)()'h +++» Ya}is an orthogonal set the result is Rayner’s lower bound (see Weinhold

P> (E,— e+ § (&, (H~E\)(H - Eg)y,)[*

i=1 {x» (H=E\)(H-Eo)’x;) >(El‘Eo)_ . (3.13)

4 The lower bounds of Hofimann-Ostenhof and Hoffman-Ostenhof

The 10We{ bounds of Hoffmann-Ostenhof and Hofimann-Ostenhof (1975) are
"Wressed in terms of the operator

M=m(H~Ey)+|¢)¢| 4.1)
Yere oy

by 0)#65 4 positive real parameter. If ¢ is a reasonable approximation to i, then
and for any vector x

O Mx) = m(x, (H~ Eo)x)+[(d, x)I? >0 (4.2)



214 A Grubb

showing that M is a strictly positive operator. Thus provided the real numbers pandg
satisfy the conditions

. {x, M*x)
p< n:‘lfW 43
and
. o {x, Mx)
q<int=r (44

the operators M>—p and M —q are both strictly positive and hence (M~ p)'2 g
(M ~q)"/? are both defined.
Suppose that we initially approximate the vector

v=(M*-p)" Yo (43
by a linear combination of the set
yi=M(M*=p)"*x, (44)

This set will be linearly independent provided that {x,, . . ., x.} are linearly indepen-
dent. Calculation shows that

ol =S/ ~p @)

Gi={x (M4—pM2)Xi> (48
and

B:=Sv; (9
where

¥ ={(M*=p)x:, ¢) (.10
hence

ISP=p(1-vy'G™y)™". @il
If {y1, ..., y.} form an orthogonal set, then

& (g, (M*—p)x)f” \ !
’ 1 P( igl (X.', (M4—PM2)X1'>

;I;he ce)lse n =1 is the first inequality of Hoffmann-Ostenhof and Hoffmann-Ostenhol
975).
Another bound is obtained by approximating

v =(M=-q)"4, @)
by the set

yi=M(M-q)"*, 1
where {x, ..., x.} is again a linearly independent set. We find that

Iof =I5P~q wr

Gy ={x» (M>—qM%)x;) 410
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)

=50 4.17)
e

8:=(xs M—q)d) “.18)
of these equations lead to

IsP=q(1-8"G"8)™". (4.19)

yymposing the requirement that {yy, ..., y,} form an orthogonal set, the inequality
19)takes the simpler form

25 (1- % K, (M~q)x)° \!
sl /q(l i§l X (MB_qu)Xi>> . (420

amin, if n=1, this is the second inequality of Hoffmann-Ostenhof and Hoffmann-
geahof (1975).
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